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Abstract

Purpose – The Hermite collocation method of discretization can be used to determine highly
accurate solutions to the steady-state one-dimensional convection-diffusion equation (which can be
used to model the transport of contaminants dissolved in groundwater). This accuracy is dependent
upon sufficient refinement of the finite-element mesh as well as applying upstream or downstream
weighting to the convective term through the determination of collocation locations which meet
specified constraints. Owing to an increase in computational intensity of the application of the
method of collocation associated with increases in the mesh refinement, minimal mesh refinement is
sought. Very often this optimization problem is the one where the feasible region is not connected and
as such requires a specialized optimization search technique. This paper aims to focus on this
method.
Design/methodology/approach – An original hybrid method that utilizes a specialized adaptive
genetic algorithm followed by a hill-climbing approach is used to search for the optimal mesh
refinement for a number of models differentiated by their velocity fields. The adaptive genetic
algorithm is used to determine a mesh refinement that is close to a locally optimal mesh refinement.
Following the adaptive genetic algorithm, a hill-climbing approach is used to determine a local
optimal feasible mesh refinement.
Findings – In all cases the optimal mesh refinements determined with this hybrid method are
equally optimal to, or a significant improvement over, mesh refinements determined through direct
search methods.
Research limitations – Further extensions of this work could include the application of the mesh
refinement technique presented in this paper to non-steady-state problems with time-dependent
coefficients with multi-dimensional velocity fields.
Originality/value – The present work applies an original hybrid optimization technique to obtain
highly accurate solutions using the method of Hermite collocation with minimal mesh refinement.
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Paper type Research paper

1. Introduction
The method of collocation, while simple to implement, has not traditionally been the
preferred finite-element approach taken when determining a numerical solution to
groundwater flow and transport models. Advances in this method were made early in
the development of finite-element theory when it was found that for certain differential
equations, the collocation locations that minimize local discretization error occur at the
points of Gaussian quadrature for each element in the finite-element mesh (Prenter,
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1975; de Boor, 2001). While this advancement found that the approximate solution at
the collocation locations minimized local discretization error, it did not solve the
difficulties inherent in oscillatory artifacts associated with the application of
collocation to solve for transport migration in a convection driven flow field.

Improvements in the method of collocation applied to the convection-diffusion
equation occurred in the mid-1980s. Upstream collocation on Hermite cubics as
compared to orthogonal collocation with respect to effective diffusion was found to
replace one type of numerical artifact (non-physical oscillations) for a more desirable one,
namely numerical diffusion in the solution to the convection-diffusion equation
(Dougherty and Pinder, 1982). Soon after this, Allen found that by using upstream
weighting on the convective term, i.e. assigning a different collocation location for
different terms in the convection-diffusion finite-element approximation, oscillations
could be reduced in the numerical approximation (Allen, 1983). These results were taken
one step further when it was shown that by careful refinement of the finite-element mesh,
the approximation could be substantially improved for accuracy (Brill, 2004).

Determining the solution to partial differential equations using collocation methods
reduces to solving linear systems that are in general non-symmetric and non-
diagonally dominant. For this reason one focus on improving the efficiency of
collocation methods has been to develop approaches that simplify the associated linear
system. One such technique involved block iterative methods for the collocation
equations of elliptic PDEs defined on a rectangular domain and subject to uncoupled
mixed boundary conditions (Lai et al., 1994). More recent advances with this focus have
involved techniques that reduce the number of unknowns associated with each node in
the discretization. One such method uses polynomials to approximate the first-order
derivatives of the solution to the flow and transport equations over a construct about
each node in the discretization (Fedele et al., 2004). Another method that is structured
on multiquadrics radial basis functions effectively changes the traditional global
collocation approach to one that is made locally over a set of overlapping domains of
influence (Vertnik and Sarler, 2006). In this approach, small linear systems with
dimension equal to the number of nodes in each domain must be solved. This method
and further advances in this methodology have been illustrated both on the convection
problem in porous media as well as in more complex systems (Kosec and Sarler, 2008;
Vertnik and Sarler, 2006). Further studies using the radial basis functions include the
double boundary collocation Hermitian approach for the solution of steady-state
convection-diffusion problems (LaRocca and Power, 2007). In this approach, at the
boundary collocation points the boundary condition and the governing partial
differential equation are required to be satisfied simultaneously, resulting in higher
precision results, especially for prediction of the fluxes at the boundaries.

While finding techniques that decrease the computational intensity associated with
collocation techniques is one focus of interest, others involved in the study of the methods
of collocation have focused on the accuracy and precision of the resultant solutions. A
coordinate transform approach that couples solutions using a finite difference approach
to a method that utilizes Hermite collocation is developed to address one-dimensional
differential problems with steep solutions (Lang and Sloan, 2002). Recent advances in
finding accurate solutions for three-dimensional boundary value problems using the
method of collocation have involved applying genetic algorithms to determine optimal
arrangements of collocation points (Zieniuk et al., 2005).

In general numerical methods used for solving differential equations improve in
accuracy with mesh refinement. The computational intensity of numerical methods is
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almost always directly related to the discretization of the solution space, i.e. the mesh
complexity. Useful numerical solvers are computationally intensive and require the use
of computer technology to implement. While computer technology is capable of
performing numerical tasks, the technology is limited and hence, it is advantageous to
the modeler to minimize the required computations for a given algorithm. The mesh
refinement exercise for Brill’s optimized finite-element application is one such example
where it is advantageous to obtain a mesh refinement that contains the smallest
number of nodes such that the constraints placed on the system are satisfied.

This paper presents an adaptive genetic algorithm followed by a hill-climbing
algorithm that is used to determine an optimal refinement of the steady-state finite-
element mesh used to approximate the solution to the convection-diffusion equation in
one dimension. This hybrid optimization algorithm determines a new finite-element
mesh for the proposed system as well as the upstream or downstream collocation
locations for the convective term. In doing so, the method of collocation in conjunction
with the determined mesh refinement can be used to efficiently determine an accurate
solution to the convection-diffusion equation.

This optimization algorithm is one that can be used for any discretization problem
where the constraints of the discretization have been determined for highly accurate
solutions. The application of this optimization algorithm to the one-dimensional
steady-state convection-diffusion problem where Hermite collocation is applied is one
such example where the necessary constraint calculations have been made.

2. Collocation and constraints
The convection-diffusion equation consists of a differential equation with two terms,
one that describes transport due to convection and another that describes transport
due to diffusion:

�D
d2u

dx2
þ v

du

dx
¼ 0: ð1Þ

The equation is defined over the interval (0, 1) with given Dirichlet boundary
conditions:

uð0Þ ¼ 1 ð2Þ
uð1Þ ¼ 0 ð3Þ

The parameter D describes the diffusion, which is assumed to be constant over the
entire region considered. The parameter v is the velocity of the groundwater and may
vary over the entire region; however, it is assumed to be a constant value on each
element in the finite-element mesh. The function u(x) is the concentration of the
contaminant in the groundwater and is the function to be approximated using
the method of collocation. The values of uL and uR are constant concentration values at
the boundaries of the domain.

It should be noted that the steady-state one-dimensional convection-diffusion
equation as is presented may not satisfy mass conservation, and this is a limitation of
this model. The application of optimal Hermite collocation to this one-dimensional
steady-state model, however, provides the approach that should be taken to solve more
complicated problems, such as those where mass conservation is satisfied. As such, the
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methods presented in this paper can be generalized to non-steady-state, time-
dependent problems in higher dimensions.

The method of collocation is one that falls under the category of the ‘‘method of
weighted residuals’’ in the field of finite-element analysis. In finite-element analysis, the
weighted sum of specified base functions over each element is used to approximate the
solution to a differential equation. To solve the one-dimensional convection-diffusion
equation using the method of collocation two points of collocation must be specified for
each element in the discretization. These points of collocation are fixed for each
element prior to the application of the method of collocation and affect the accuracy of
the determined approximation to the solution. As such the collocation points are
decision variables in the search for an optimally accurate approximation to the
convection-diffusion equation using the method of collocation.

For example the true solution of a one-dimensional problem, u(x), is approximated
by a linear combination of n þ 1 predetermined basis functions, ûui , where n is the
number of elements in the finite-element mesh and so n þ 1 is equal to the number of
nodes in the mesh:

ûuðxÞ ¼
Xn

i¼1

wi~uuiðxÞ: ð4Þ

In the method of weighted residuals, the value of the weights, wi, is determined by
setting the weighted errors (or weighted residuals) of this approximation over the
domain of the problem equal to zero. This amounts to finding those wi values such that
the residual times a weighting function defined locally to each element is equal to zero.
The residual is the integral of the differential operator applied to the approximation to
the solution.

When the Dirac-delta function is used as the weighting function for the method of
weighted residuals, this focuses the residual to the point where the Dirac-delta function is
not equal to zero. This point is called the collocation location, xk. The method of collocation
is then just a finite-element method that utilizes the method of weighted residuals where
the weights are defined to be the Dirac-delta functions, �(x). The integral that is satisfied isð

B

RðûuðxÞÞ�ðx� xkÞdx ¼ 0 for k ¼ 1::m ¼ 2n� 2: ð5Þ

The parameter B represents the boundary of the region over which the differential
equation is defined and R is the residual function defined as

RðûuðxÞÞ ¼ �D
d2ûu

dx2
þ v

dûu

dx
ð6Þ

Clearly RðûuðxÞÞ ¼ 0 for each collocation location xk.
When using the method of collocation to approximate the solution to the convection-

diffusion equation in one dimension, it has been shown that upstream weighting
applied to the convective term can minimize numerical artifacts associated with the
method of collocation (Allen, 1983). Through refinement of the finite-element mesh in a
precise manner, along with upstream or downstream weighting, the numerical artifacts
associated with the method of collocation can be eliminated and the results of
approximation are highly accurate (Brill, 2004).
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Brill has successfully determined the required mathematical relationships between
the locations of the nodes and the collocation locations for the convective and diffusive
terms for each element so that the method of collocation results in highly accurate
numerical approximations to the true solution of our convection-diffusion equation
(Brill, 2004). The parameters of these relationships include:

. an initial number of elements for the model, p

. the velocity of the groundwater over each element, v1, v2, . . ., vp

. the diffusivity for the contaminant, D, which is constant over the entire model.

The refinement of the original mesh prescribed will be such that the ith element will be
divided into mi equally spaced elements and the collocation locations. The value of �i is
defined locally over element i and as such only assumes values between
�1=2þ 1=

ffiffiffiffiffi
12
p

and 1=2� 1=
ffiffiffiffiffi
12
p

. In this work, however, �i, will fall within bounds set
in Brill’s 2004 paper.

To search for the minimum mesh refinement, begin by determining the largest index,
i, associated with the element assigned the highest velocity value for the groundwater
model. This index is called the kth index and so vk � vi for all i 6¼ k. It is over this kth
element that there is a single equation that relates the element’s refinement, mk, to the
collocation locations over this element, �1=

ffiffiffiffiffi
12
p
� �k (see the Appendix) (Brill, 2004).

Given a fixed mk, �k is determined to be the root of a quadratic equation.
All other �i (where i 6¼ k) values can be determined from fixed mk and mi values

through the use of equations derived by Brill and presented in the Appendix of this
paper. These equations relate consecutive elements in such a way that the unknown �i

values can be determined as long as mi is known as well as either (1) �i�1 and mi�-1 are
known or (2) �iþ1 and miþ1 are known. In both cases, �i is determined to be the root of a
polynomial of potentially high degree. Numerical methods must be used to determine
such a root. It is sufficient that only one root of this polynomial be within the bounds
set by Brill. This root is the assigned �i value.

To summarize, once an mk value is found such that �k falls within the assigned
bounds set for all �i values, one can fix all other mi values where i 6¼ k and determine
the associated �i values. The goal is to find values of mi such that (1)

Pp
i¼1 mi is

minimized and (2) �i satisfy their given constraints.

3. Optimization problem
The convection-diffusion equation can be solved with very high accuracy using the
method of collocation provided certain relationships exist between the location of the
nodes of the finite-element mesh and the collocation location assigned to the convective
term in the convection-diffusion equation (Brill, 2004). Obtaining the relationships
necessary for the application of collocation with highly accurate solutions often
requires refinement of a crude finite-element mesh that may have been defined with the
intent to capture physical distinctions within the model, such as spatially variable
changes in parameter values. Because computational intensity involved in the
application of the method of collocation is related to the number of elements prescribed
in the model, it is advantageous to determine a minimal mesh refinement that
optimizes the numerical accuracy of the approximating solution.

The optimization problem for maximum accuracy and minimum computational
intensity associated with finding the solution to the convection-diffusion equation
using the method of collocation is derived in the following manner. The objective
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function is the sum of the number of elements in the finite-element mesh. In order to
minimize the computational intensity associated with using the method of collocation,
the sum of the number of elements is minimized.

The constraints of this optimization problem consist of conditions that must be
satisfied between the points of upstream/downstream weighting, �i, and the mesh
refinement, mi, for each element i. These conditions were derived by equating the solution
to the convection-diffusion equation determined through analytic methods to the
analytical solutions of upstream Hermite collocation. By equating these solutions at each
node of the finite-element mesh, Brill showed that maximum accuracy in the application of
the method of collocation is obtained for this problem. Additional constraints placed upon
this optimization problem include that of restricting the upstream weighting to the
support of the basis functions used in Hermite collocation, 1/2, plus or minus 1=

ffiffiffiffiffi
12
p

,
which are the points of Gaussian quadrature. The number of elements must be within the
set of positive integer values and the upstream weight for each element is within the set of
complex values. The initial finite-element mesh consists of p elements.

The formulation of the optimization problem is given by
minimize:

Xp

i¼1

mi ð7Þ

subject to:

Gð�k;mkÞ ¼ 0 ð8Þ
Fið�iðmi; �iþ1;miþ1ÞÞ ¼ 0 ð9Þ
Hið�iðmi; �i�1;mi�1ÞÞ ¼ 0 ð10Þ

j�ij �
1

2
� 1ffiffiffiffiffi

12
p ð11Þ

mi 2 Zþ and �i 2 R 8i ¼ 1::p ð12Þ

where mi is the number of new elements, i.e. the mesh refinement in element i, Zþ

denotes the set of positive integers and R denotes the set of real numbers. If mi ¼ 1,
then no mesh refinement occurs. The value k is a fixed integer that is equal to the
largest index of the element with the largest value of velocity in the physical model.
The value p is the number of elements in the original physical model. The value of � i is
the amount of upstream weighting, when � i is determined to be greater than zero, or
downstream weighting, when �i is determined to be less than zero, applied to the
convective term, and hence is related to the collocation location for the convective term
over element i. The functions G, F and H refer to the relationships prescribed by Brill in
order to obtain maximum accuracy in the application of the method of collocation for
this problem. These functions are described in detail in the Appendix.

The optimization problem is to find the vector m ¼ (m1, m2, . . ., mp) such that the sum
of the components of m is minimized while the � i values all adhere to the prescribed
relationships given by the functions G, F and H and that the �i values all fall within the
required upper and lower bounds. The boundaries placed upon the � i values vary non-
linearly as a function of m, so while the objective function for this problem is linear, the
nature of the non-linearity of the constraints results in a feasible region that is non-convex.
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Through a direct search method Brill has determined discretizations that result in
highly accurate approximations (Brill, 2004). This work, however, was conducted on a
problem where there were initially only four initial elements in the finite-element mesh. As
the number of initial elements considered in this problem increases, the dimensionality of
the problem increases and a direct search method is not an efficient search technique for
determining a discretization that results in highly accurate solutions.

4. Optimization solver: hybrid search technique
The constrained optimization problem is transformed into an unconstrained
optimization problem so that global optimization techniques can be employed.
Violations of those constraints that pertain to the �i values are permitted, however,
when this occurs, a penalty term is added to the value of the objective function.

If it is found that, given a fixed m, at least one of the polynomials G, F and H does not
have a real root, then a violation value is determined for that m. Examining the complex
roots for each polynomial with the smallest magnitude, � i, the violation is determined to
be the sum of the Euclidian distances from the violating �i values to the closest boundary
value placed upon all �i values, namely 1=2� 1=

ffiffiffiffiffi
12
p

or �1=2þ 1=
ffiffiffiffiffi
12
p

. Once the sum
of the violations has been determined, this value is multiplied by a penalty weight, �,
then added to the sum of the mi values to obtain the value of the transformed objective
function. This modification of the optimization problem is expressed as
Objective:

min
Xp

i¼1

mi þ � �maxð0; �iÞð Þ ð13Þ

Subject to:

Gð�k;mkÞ ¼ 0 ð14Þ
Fið�iðmi; �iþ1;miþ1ÞÞ ¼ 0 ð15Þ
Hið�iðmi; �i�1;mi�1ÞÞ ¼ 0 ð16Þ
mi 2 Zþ and �i 2 C 8i ¼ 1::p ð17Þ

where �i is given by

�i ¼

0; if�i 2 R and j�ij �
1

2
� 1ffiffiffiffiffi

12
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Reð�iÞ �
1

2
� 1ffiffiffiffiffi

12
p

� �� �2

þ Imð�iÞð Þ2

vuuut ; if�i 2 C; �i =2R and Reð�iÞ � 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Reð�iÞ � � 1

2
þ 1ffiffiffiffiffi

12
p

� �� �2

þ Imð�iÞð Þ2

vuuut ; if�i 2 C; �i =2R and Reð�iÞ < 0

8>>>>>>>>>>>><
>>>>>>>>>>>>:

and C denotes the set of complex numbers.
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While it may seem that the objective function is now a function of continuous
variables, namely �i, this is not the case. Recall that the �i values are dependent upon
the integer values mi. This optimization problem remains of the integer type; however,
the transformation performed has rendered the objective function non-linear.

The method used to solve this optimization problem is a hybrid method that consists
of cycling through two search phases: an adaptive genetic algorithm (AGA) and a local
gradient search (GS) algorithm. The objective of the first phase, the AGA phase, is to
obtain a solution that is within close proximity of a local optimal solution. In the second
phase, the GS phase, a local search is conducted to obtain the local optimal solution in the
region determined. Parameters that define the search space of the genetic algorithm
within the AGA phase are updated at the start of each cycle of the search. By changing
these parameters the optimization algorithm is able to improve its efficiency in
determining feasible regions that are not connected where improved locally optimal
solutions may exist. For the problem considered in this paper two regions are not
connected if the minimum distance between these regions is greater than one. A
connected region is one where the distance between any point in the region and its
nearest neighbor is not greater than one. The search algorithm terminates when the
solutions to successive cycles does not result in an improved locally optimal solution.
Because of the discrete nature of this optimization problem and the nonlinearity in this
problem, there are no current optimization techniques developed that ensure that the
determined local solution is the global solution; however, this does not preclude one from
using the available techniques to determine a reasonable solution.

4.1 Adaptive genetic algorithm
Each cycle of the hybrid optimization solver begins with the application of an AGA. To
begin the AGA (Holland, 1992) value encoding is employed so that a parent population
of size N of the m vectors is created by randomly selecting positive integer values for
each mi variable within some prescribed range of values. In the first cycle of this solver,
the upper bound is based upon preliminary analysis of the problem to determine a
value that, when setting all elements of the m vector equal to it, will result in a feasible
solution. In subsequent cycles of this solver, the upper bound is set equal to the sum of
elements of the most recently determined local optimal solution,

Pn
i m�i . The lower

bound, for all mi where i 6¼ k is 1. And the lower bound for mk is set equal to the
minimum value of mk such that j�kj � 1=2� 1=

ffiffiffiffiffi
12
p

. It is the adaptive nature of the
upper bound of the genetic algorithm that increases the efficiency of this algorithm for
determining locally optimal solutions in feasible regions that are not connected.

Once a parent population has been determined at the start of each cycle a fitness
value is assigned to each member of the population. This fitness value is defined to be
the sum of the mi values plus a penalty term associated with any violations of the �i

constraints (Equation 11).
After a parent population has been determined and a fitness value has been assigned

to each member of the parent population, a new population is derived from a subset of
the parent population. This new population, referred to as the child population or the
next generation, will contain the same number of members as the parent population. The
derivation of the child population entails a number of processes.

In determining the child population from the parent population, elitism is employed,
i.e. some members of the parent population that have the best fitness values become
members of the child population.
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Members of the child population not obtained through elitism are derived from a
subset of the parent population with the highest fitness values (including those
members that were involved in elitism). These members of the child population are
created through recombination of the given set of parents. This recombination involves
crossover and mutation.

In one single point crossover event, two parents, mP1 and mP2, are randomly
selected from that subset of the parent population that meets the fitness criteria set by
the modeler for recombination. In crossover, a new vector of p integers, the child, mC, is
created by taking a combination of the two parent strings in the following manner. The
first s elements of mC are equal to the first s elements of mP1, while the remaining p� s
elements of mC are equal to the final p � s elements of mP2 (Table I).

There is only one crossover location, s, in this algorithm; however, this crossover
location is randomly selected for each crossover event. Random crossover events are
conducted until the child population has as many members as the parent population.

Crossover events and elitism do not introduce new integer values into the
population. To introduce new integer values into each string of mi’s in each population,
random integer values are changed or mutated after each crossover event (Table I). The
number of integers that undergo mutation is determined through a mutation rate set by
the modeler. Members of the child population that have been determined through
elitism do not undergo mutation.

The child population generated from the original parent population is referred to as
the first generation. After this first child population is obtained, this population acts as a
parent population for a new generation or new child population. The nth generation is
used to obtain the (n þ 1)st generation, whose fitness values for the best fit members are
equal to, or surpass the fitness values of the generation from which they were derived.

The genetic algorithm ends when a maximum number of generations has been derived.
Because of the random nature of the genetic algorithm, no assurance can be made that the
algorithm results in a global optimal solution. Only an exhaustive search of m vectors with
incrementally larger magnitudes can make this assurance. As the number of elements
considered in the physical model increases, however, an exhaustive search is not feasible.

4.2 Local search
Preliminary results have indicated that the nature of this optimization problem is such
that the optimal values of m1, m2, . . ., mp may vary by orders of magnitude (Brill, 2004).
Due to this variation, convergence to a local optimal solution using an AGA is
inhibited. At later stages of the AGA, the populations approach uniformity, i.e. the
members of the population are very similar and crossover events are not effective in
generating members of a child population with improved fitness values. Improvements
in fitness become reliant upon mutation. Values of mi that are relatively low are closer

Table I.
Creation of a member of
a child population of
length p ¼ 15 from a
single crossover event
where the random
crossover location is at
s ¼ 5

Integer string of length p¼ 15

Parent 1 3 8 4 14 5 8 2 3 1 6 4 9 1 2 3
Parent 2 4 9 5 7 2 4 9 2 26 5 7 4 8 17 2
Child 3 8 4 14 5 4 9 2 26 5 7 4 8 17 2
Mutated child 3 8 21 1 5 4 9 7 26 5 7 1 8 3 2

Note: The child is then mutated with a mutation rate 20 percent, which affects three elements of
the child vector
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to their optimal value than mi values which are large, and hence, the most beneficial
mutation events are dependent upon (1) the mutation rate, which is typically set to be a
low value, (2) the mutation direction being one that results in an improvement of the
fitness of m and (3) the likelihood of the mutation occurring at an mi value that leads to
substantial improvement of the fitness of m. The conditions for beneficial mutation
occurring at later stages of this AGA are not frequent, and convergence to a local
optimal is slow. For this reason, a local search algorithm is developed for this problem.

While the AGA is not an efficient method for determining a local optimal m for this
problem, the AGA is very effective at determining a region where a locally optimal
solution exists. After the AGA has determined a region where a locally optimal solution
exists, the newly developed local search is used to determine the true local optimal.

The local search that has been developed is specifically designed for this integer
problem that contains scaling issues and known trajectories for improvement in the
feasible region. The local search determines the fitness values of a number of m vectors
within the vicinity of the solution determined with the AGA. This set will contain at
most p neighboring m vectors determined in the following manner. First a step size
that is directly related to the size of mi is determined for each i direction. Each member
of the neighboring set is the same as the m determined through the GA except the mjth
element. The mjth element is set equal to mj from the solution to the AGA minus the jth
step size. If this step results in a vector where either the fitness value has not improved
or the original constraints for the optimization problem are violated then the
magnitude of the step size is reduced to the greatest integer closest to the original
magnitude reduced by one-half. The search for a better-fit-feasible neighbor that varies
in the jth element is implemented with the reduced step size. Reduction of the step size
continues until a neighboring vector is determined to have an improvement in fitness
and zero penalty. If the jth step size is determined through the reduction process to be
less than one, this implies that the solution to the AGA cannot be improved in the jth
direction, and no neighboring vector is included in the neighboring set (Table II).

Once the neighboring set has been determined, the vectors within the set are ranked
according to their fitness values. The best fit solution in the neighboring set is then
determined. The region of this new best solution is examined in the local search, which
continues until the neighboring set contains no vectors. The last best fit solution is the
locally optimal solution in the region of the solution determined through the AGA.

5. Example problems
The search for an optimal mesh refinement for the application of the method of
collocation to solve our convection-diffusion equation is applied to 12 one-dimensional
problems with (initially) four equally spaced nodes. These models are broken up into
two groups that differ in the values of the diffusivity constants. The first group has a

Table II.
An example of a

neighboring set of m
where p ¼ 4

m¼ 2 42 3 1

Step size 1 5 1 1
Neighbors
Neighbor (1) 1 42 3 1
Neighbor (2) 2 37 3 1
Neighbor (3) 2 42 2 1
Neighbor (4) none
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diffusivity constant of 5, while the second group has a diffusivity constant of 1. The six
subgroups differ in the velocity values assigned to each node. These 12 example
problems along with the optimal mesh refinement values are listed in Tables III and IV.
Additionally, four one-dimensional problems with eight equally spaced nodes and
where D ¼ 1 are examined (Table V).

The penalty weight for the problem where D ¼ 5 is � ¼ 100 and where D ¼ 1 is
� ¼ 200. Violations in the constraints will be multiplied by this value and added to the
objective function so that this optimization problem can be viewed as an unconstrained
optimization problem.

The parameters of the genetic algorithm are listed in Table VI. The mutation rate is
20 percent for this problem, which is a very high value for most genetic algorithms. In
this problem the string of integers to be optimized contains either four or eight
elements, and so a mutation rate of less than 25 percent is sufficiently small for
optimization.

6. Results

Optimal mesh refinements determined with the hybrid optimization algorithm are
listed in Tables III-V. The hybrid method was run for each example 100 times, each
with a different randomly generated initial parent population. In all instances where a
direct search method has been previously examined for the problem the solutions

Table III.
Values of parameters in
the computational
examples. D¼ 5

Example
number D j vj

Direct
search mj

Hybrid
search mj

Solution
frequency

Hybrid
search �j

Hybrid
maximum error

1 5 1 100.0 41 24 100% �1.259 � 10�5 2.187 � 10�14

2 0.1 8 1 2.100 � 10�1

3 10.0 8 1 �8.473 � 10�4

4 1.0 8 1 1.324 � 10�1

2 5 1 0.1 1 1 100% �2.097 � 10�1 6.661 � 10�16

2 100.0 24 24 �1.259 � 10�5

3 10.0 1 1 �8.085 � 10�4

4 1.0 1 1 1.288 � 10�1

3 5 1 10.0 1 1 100% 6.149 � 10�4 6.772 � 10�15

2 0.1 1 1 �2.097 � 10�1

3 100.0 24 24 �1.259 � 10�5

4 1.0 1 1 2.074 � 10�3

4 5 1 0.1 2 1 100% �3.886 � 10�2 1.669 � 10�8

2 1.0 2 1 3.781 � 10�4

3 10.0 2 2 �1.090 � 10�4

4 100.0 17 17 �3.552 � 10�5

5 5 1 0.1 1 1a 72% �2.089 � 10�1 2.153 � 10�8

2 100.0 43 42 2.514 � 10�6

3 0.1 1 1 �2.235 � 10�2

4 100.0 41 42 �2.345 � 10�6

6 5 1 100.0 9 1 100% 1.908 � 10�2 2.142 � 10�14

2 0.1 9 1 �2.097 � 10�1

3 100.0 42 24 �1.259 � 10�5

4 0.1 9 1 2.100 � 10�1

Note: aMultiple solutions of equal value are determined. See the text for these solutions
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determined with the hybrid algorithm are equal to or an improvement over previous
results (Brill, 2004).

The value of D is set equal to 5 in Examples 1 through 6. This differs from the value
of D set in Examples 7 through 12, which is 1. Other than this difference for Examples 1
through 12 Example 1 is the same as Example 7, Example 2 is the same as Example 8,
etc. The value of D is set equal to 1 in Examples 13 through 16, and the velocity fields
are variations of Example 10 and Example 7.

The results from Examples 1 and 6 are a vast improvement over the direct search
method. One phase cycle of the hybrid algorithm inclusive of the AGA and the GS was
utilized to determine these solutions. The solution for Example 1 is m ¼ (24, 1, 1, 1)
(Figure 1) and the solution for Example 6 is m ¼ (1, 1, 24, 1). In both of these examples,
the solutions were determined in 100 percent of the runs. The numerical solution is equal
to the true solution at the collocation locations; however, it is only an approximation to
the solution at the nodes. The maximum error is calculated to be the maximum difference
between the numerical approximation and the true solution at all of the nodes within the
finite-element mesh. The maximum errors of the numerical solutions determined with
these discretizations are 2.187 � 10�14 and 2.142 � 10�14, respectively.

The direct search results for Examples 2 and 3 are identical to the results
determined using the hybrid algorithm in 100 percent of the runs. The maximum
errors are 6.661 � 10�16 and 6.772 � 10�15, respectively. One phase cycle of the
hybrid algorithm was utilized to determine these solutions.

Table IV.
Values of parameters in

the computational
examples. D¼1

Example
number D j vj

Direct
search mj

Hybrid
search mj

Solution
frequency

Hybrid
search �j

Hybrid
maximum error

7 1 1 100.0 108 54 100% �1.396 � 10�4 1.121 � 10�4

2 0.1 16 1 2.076 � 10�1

3 10.0 16 2 �4.804 � 10�3

4 1.0 16 1 1.819 � 10�1

8 1 1 0.1 1 1 100% �2.061 � 10�1 1.142 � 10�4

2 100.0 97 54 �1.396 � 10�4

3 10.0 11 2 �4.743 � 10�3

4 1.0 1 1 1.798 � 10�1

9 1 1 10.0 1 1 100% 8.567 � 10�3 1.776 � 10�15

2 0.1 1 1 �2.061 � 10�1

3 100.0 54 54 �1.396 � 10�4

4 1.0 1 1 1.798 � 10�3

10 1 1 0.1 1 1 91% �1.729 � 10�1 5.3291 � 10�15

2 1.0 1 1 1.476 � 10�3

3 10.0 4 4 �5.855 � 10�4

4 100.0 36 36 �4.790 � 10�4

11 1 1 0.1 1 1a 32% �2.108�1 3.962 � 10�8

2 100.0 145 139 6.887 � 10�6

3 0.1 1 1 �3.949 � 10�3

4 100.0 139 145 �7.131 � 10�6

12 1 1 100.0 18 1 100% �4.000 � 10�2 Code failed to
produce a solution2 0.1 18 1 �2.061 � 10�1

3 100.0 111 54 �1.396 � 10�4

4 0.1 18 1 2.076 � 10�1

Note: aMultiple solutions of equal value are determined. See the text for these solutions
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In Example 5, a number of different but equal mesh refinement combinations were
determined 72 percent of the time using the hybrid algorithm. These combinations
include: m ¼ (1, 44, 1, 40); m ¼ (1, 43, 1, 41); m ¼ (1,42, 1, 42) determined in 20, 26 and
26 percent of the runs, respectively. All of these solutions result in a highly accurate

Table V.
Values of parameters in
the computational
examples. D ¼ 1

Example
number D j vj

Hybrid
search mj

Solution
frequency

Hybrid
search �j

Hybrid
Maximum error

13 1 1 0.1 1a 6% �2.076 � 10�1 5.854 � 10�12

2 1.0 1 1.993 � 10�3

3 10.0 4 �1.629 � 10�4

4 100.0 59 �1.246 � 10�6

5 0.1 1 3.374 � 10�3

6 1.0 2 �7.161 � 10�5

7 10.0 7 �1.627 � 10�5

8 100.0 63 �1.087 � 10�5

14 1 1 0.1 1 100% 1.472 � 10�1 1.195 � 10�12

2 0.1 1 �1.458 � 10�1

3 1.0 1 1.384 � 10�3

4 1.0 1 �1.333 � 10�3

5 10.0 4 �5.459 � 10�5

6 10.0 5 3.002 � 10�5

7 100.0 44 �3.509 � 10�5

8 100.0 43 �3.429 � 10�5

15 1 1 100.0 1a 70% 3.257 � 10�2 7.812 � 10�1

2 0.1 1 �1.991 � 10�1

3 10.0 7 9.757 � 10�5

4 1.0 1 �1.044 � 10�3

5 100.0 45 �2.991 � 10�5

6 0.1 1 1.063 � 10�1

7 10.0 2 �8.272 � 10�4

8 1.0 1 4.635 � 10�2

16 1 1 100.0 1 100% 3.256 � 10�2 9.436 � 10�1

2 100.0 38 �4.976 � 10�5

3 0.1 1 2.099 � 10�1

4 0.1 1 �2.074 � 10�1

5 10.0 2 �7.751 � 10�4

6 10.0 2 �6.283 � 10�5

7 1.0 1 1.611 � 10�2

8 1.0 1 �1.537 � 10�2

Note: aMultiple solutions of equal value are determined. See the text for these solutions

Table VI.
Values of parameters in
the optimization
algorithm

Total number of optimization runs 100

Genetic algorithm
Population size 50
Mutation rate (%) 20
Elitism (%) 10
Parent percent used for offspring (%) 60
Number of iterations 70
Local search
Maximum number of iterations 100
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finite-element approximation to the convection-diffusion equation. The maximum
errors associated with these discretizations are 2.153 � 10�8, 9.996 � 10�9 and
1.300 � 10�9, respectively. These results were reached in one to nine phase cycles of
the hybrid search algorithm.

The hybrid algorithm results in a modest improvement over the direct search method
in Example 4. One to two phase cycles of the hybrid search method were utilized to
obtain these results. The direct search method determines an optimal solution of m ¼ (2,
2, 2, 17) while the hybrid method determines the optimal solution to be m ¼ (1, 1, 2, 17).
The error associated with the improved hybrid solution is 1.669 � 10�8.

Some of the optimal discretizations determined with the hybrid method for the example
problems where D ¼ 5 were obtained with the assistance of the adaptive abilities of the
hybrid algorithm. To understand why the adaptive features of the hybrid algorithm were
employed it is useful to examine the geometry of the feasible region for the optimization
problem. For illustrative purposes the geometry of Example 4 is examined further.

Because the objective function is dependent upon m1;m2;m3 and m4, the
relationship between the independent variables and the objective function cannot be
fully viewed in one figure. By fixing m1 ¼ 1 and m2 ¼ 1 the feasible region of the
objective function for Example 4 can be viewed as a function of m3 and m4 only
(Figure 2). In Figure 2, the asterisks represent feasible solutions to the optimization
problem. In this example problem the feasible region is separated into two regions that
are not connected. The region where the optimal solution m ¼ (1, 1, 2, 17) exists is very
small compared to the region where suboptimal solutions exists. In some instances the
hybrid algorithm fails to find the global optimal after one phase cycle because the
feasible region is not connected and because the region where the global optimal exists
is very small in the scope of the problem. By limiting the search space of the genetic
algorithm in the second phase cycle of the hybrid algorithm, the likelihood of the
random search method to determine a new feasible region is increased.

Figure 1.
Example 1
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The genetic algorithm employed in the hybrid method is a random start method and
for this reason the likelihood of random combinations of mi values falling within the
region of the global optimal solution is quite small. The first phase cycle of the AGA
successfully determines the large region where a feasible solution exists, and the local
search successfully determines the local optimal solution within this region. The
second phase cycle effectively locates the smaller feasible region where the global
optimal solution exists by eliminating all but the boundary of the large feasible region
from consideration in the genetic algorithm. Because of the random nature of the
genetic algorithm and the potentially small sizes of the feasible regions that are not
connected where globally optimal solutions may exist, it is possible that the AGA will
not successfully locate truly optimal solutions. By limiting the search space of the
AGA, the effectiveness of the algorithm is enhanced.

Example 4 clearly illustrates the benefits of using the multi-phase adaptive hybrid
algorithm developed for this problem to determine a global optimal solution.

The results of the hybrid optimization algorithm for determining a minimal mesh
refinement for Examples 7 through 12 are summarized in Table IV.

The results in Example 9 match the solution determined in the direct search
method. In Example 9 the results were determined in one phase cycle of the hybrid
algorithm. The solution for Example 9 is m ¼ (1, 1, 54, 1) and was determined in 100
percent of the runs. The maximum error of the numerical solution given this
discretizations is 1.776 � 10�15.

The results from Examples 7, 8 and 12 are a great improvement over the direct
search method. These results were determined after one phase cycle of the hybrid
algorithm. The respective solutions for Example 7, 8 and 12 are m ¼ (54, 1, 2, 1),
m ¼ (1, 54, 2, 1) and m ¼ (1, 1, 54, 1), all obtained in 100 percent of the runs. The
maximum errors of the numerical solutions to Examples 7 and 8 are 1.121 � 10�4 and
1.142 � 10�4. The computer code that would generate the numerical solution given the
discretization for Example 12 crashes due to unknown reasons.

Figure 2.
Example 4
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In Example 11, a number of different but equal optimal mesh refinement combinations
were determined 32% of the time using 1-11 phase cycles of the hybrid algorithm. These
solutions are equal to the solution determined in the direct search method. The
discretizations as well as the associated maximum errors in the numerical solutions
include: m ¼ ð1; 145; 1; 139Þ with maximum error of 2:243� 10�8; m ¼ ð1; 144; 1; 140Þ
with maximum error of 1:098� 10�8; m ¼ ð1; 143; 1; 141Þ with maximum error of
1:543� 10�14; m ¼ ð1; 142; 1; 142Þ with maximum error of 1:054� 10�8; m ¼
ð1; 141; 1; 143Þ with maximum error of 2:064� 10�8; m ¼ ð1; 140; 1; 144Þ with
maximum error of 3:033� 10�8; and m ¼ ð1; 139; 1; 145Þ with maximum error of
3:962� 10�8. These refinements occur in 1, 7, 3, 4, 1, 6 and 10 percent of the runs so that
the total number of equivalent solutions make up 32 percent of the runs.

Just as Example 4 was one such example for the D ¼ 5 case where the hybrid
algorithm required more than one phase cycle to determine a solution, so did the solution
for Example 10 where D ¼ 1. Between one and four phase cycles of the hybrid method
were utilized to obtain the discretization of m ¼ (1, 1, 4, 36) associated with a maximum
error of 5.3291 � 10�15 in 91 percent of the runs. By fixing m1 ¼ 1 and m2 ¼ 1 the
feasible region of the objective function is viewed as a function of m3 and m4 in Figure 3.
Just as in Example 4, the feasible region for Example 10 is separated into regions that are
not connected. In this example, there are three regions that are not connected, depicted in
Figure 3. The adaptive hybrid method was able to locate the smallest of the three regions
that are not connected where the global optimal feasible solution exists.

Examples 13 through 16 illustrate the ability of this hybrid algorithm to determine
mesh refinements that result in accurate solutions to our convective-diffusion equation
using the method of collocation with upstream or downstream weighting. These
example problems contain elements of Examples 10 and 11. The characteristics of the
objective functions for each of this problems is quite difficult to observe given that
the dimensionality of the problems has risen from four to eight. The error analysis of

Figure 3.
Example 10
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the results, however, are perfectly reasonable to determine and are used as a measure
of the effectiveness of the hybrid algorithm to determine reasonable results.

The results of the hybrid algorithm for Examples 13 through 16 are summarized in
Table V. In Example 13 the hybrid method determines three equal solutions: m ¼ (1, 1,
4, 59, 1, 2, 7, 63) with a maximum error of 5.854 � 10�12 in 4 percent of the runs;
m ¼ (1, 1, 4, 58, 1, 2, 7, 64) with a maximum error of 4.815 � 10�12 in 1 percent of the
runs; m ¼ (1, 1, 3, 53, 1, 2, 7, 55) with a maximum error of 1.815 � 10�11 in 1 percent of
the runs. One to two phase cycles of the hybrid method were called to determine these
solutions. While the equal discretizations determined above account for only 6 percent
of the runs, it should be noted that the other 94 percent of the runs resulted in five
different solutions that each contained just one more discretization refinement, for
example m ¼ (1, 1, 4, 62 ,1, 2, 7, 61).

In Example 14 the hybrid method determined the solution m ¼ (1, 1, 1, 1, 4, 5, 44,
43) with a maximum error of 1.195 � 10�12 in 100 percent of the runs. One to four
phase cycles were required in the optimization runs.

The hybrid method applied to Example 15 determined the equivalent solutions of
m ¼ ð1; 1; 7; 1; 45; 1; 2; 1Þ;m ¼ ð1; 1; 8; 1; 44; 1; 2; 1Þ and m ¼ ð1; 1; 9; 1; 43; 1; 2; 1Þ
with maximum errors of 7:812� 10�1; 7:729� 10�1 and 7:721� 10�1, respectively in
37, 20 and 13 percent of the runs for a total of 70 percent of the runs. One to eight phase
cycles were employed in the hybrid method to obtain these solutions.

In Example 16 the hybrid method determined the solution m ¼ ð1; 38; 1; 1; 2; 2; 1; 1Þ
with a maximum error of 9:436� 10�1 in 100 percent of the runs. Only one phase cycle
was required in all of the optimization runs.

7. Conclusions
To determine an optimal mesh refinement so that the method of collocation can determine
highly accurate solutions to the steady-state one-dimensional convection-diffusion, one
must solve a non-linear integer optimization problem. The results of this optimization
problem provide both the mesh refinement as well as the upstream or downstream
collocation locations for the convective term for each element of the finite-element mesh.

The constrained optimization problem was transformed into an unconstrained
optimization problem. This was done by allowing violations of the constraints;
however, when the violations occurred, the objective function was penalized. This
transformation allowed for the application of a random search algorithm, namely a
genetic algorithm. Refinement of the solution to the genetic algorithm was done
through a newly developed local search technique designed to handle the variations in
scale for this integer problem.

Due to possibility of feasible regions that are not connected in the presented
optimization problem, an adaptive hybrid method was developed to solve this problem.
The adaptive hybrid method utilizes both an AGA as well as a local GS technique
developed specifically for this problem. This adaptive algorithm consisted of
completing phase cycles of the AGA and the GS, with each cycle containing a search
space that is limited by the results of the most recently completed phase cycle.

This adaptive hybrid method was successful at determining discretization solutions
that were equal to or better than previous results determined through the direct search
method. In cases where direct search methods have not been utilized to determine mesh
refinements due to the high dimensionality of the problems, this method effectively
determined mesh refinements that resulted in approximate solutions with reasonably
small errors.
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The geometry of the feasible regions of problems where multiple phase cycles were
employed was examined. The results of this exploration indicate that in some instances
this optimization problem is one with feasible regions that are not connected. In the two
instances where the hybrid method utilized multiple phase cycles to determine a
solution, the global optimal solution was found to be in a small region that is not
connected. Because genetic algorithms are random search methods, the likelihood of
finding the small regions that are not connected where the global optimal solution
exists is dependent upon the size of the search space. The adaptive hybrid algorithm
effectively determines feasible regions that are not connected because at each new
phase cycle, the search space for the AGA is reduced, thereby increasing the likelihood
of determining small feasible regions that are not connected where the optimal solution
may exist.

There are two immediate extensions of this work that are possible. The first
extension is that of determining accurate solutions to non-steady-state, one-
dimensional advection-diffusion problems with time-dependent coefficients. Due to the
variability of forms that these equations may take, it is difficult to generalize the
solution determined through analytic methods to these equations. For these same
reasons, it is not possible to determine a generalized form of solution determined
through the method of collocation applied in this work. Without these two sets of
solutions, it is not possible to determine an optimal discretization for all non-steady-
state problems with time-dependent coefficients. For individual non-steady-state
problems with time-dependent coefficients that are solvable using analytic methods, it
is possible to extend this work directly as the solutions determined through the method
of collocation can be derived for any problem. The first step to this extension, namely
the non-steady-state problem with constant coefficients, is currently being developed
for the non-steady-state problem.

The second immediate extension of this work is to examine how the method of
collocation presented can be optimally accurate for a problem in a multi-dimensional
velocity field. In general it is possible to solve the steady-state, advection-diffusion
equation with constant coefficients using analytic methods. Determining the analytic
solutions through the method of collocation, however, is a complicated problem and
requires extensive work. Once these solutions have been derived, the optimization
algorithm developed for this problem may be applied to determine minimal
discretization for accurate solutions to the multi-dimensional problem.
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Appendix
To find �k.
To determine a feasible �k from mk where k refers to the largest index of the largest vi in the

model, find the roots of the following polynomial, Gð�kÞ:

Gð�kÞ ¼ ½�k � �k expð�kÞ��2
k þ ½4þ �k � 4 expð�kÞ þ �k expð�kÞ��k

þ ½�
2
k þ 6�k þ 12� � expð�kÞ½�2

k � 6�k þ 12�
6�k

In this equation �i are the Peclet numbers for each element i and are functions of the mesh
refinement of element i, mi, the velocity prescribed to element i, vi , the diffusion coefficient that is
constant over the entire model, D and the maximum number on initial elements, p:

�i ¼
vi

Dpmi

To find �i in terms of mi;miþ1 and �iþ1.
To determine �i in terms of mi;miþ1 and �iþ1, find the roots of the following polynomial,

Fð�iÞ:

Fð�iÞ ¼ Biþ1½ð�2
i þ 6�i þ 12þ 6�i�ið4þ �i þ �i�iÞÞmi �½�2

i �
2
i þ 4�i�i þ 2�

� 2�ipmi�½1þ �i�i�½ð�2
i þ 6�i þ 12þ 6�i�ið4þ �i þ �i�iÞÞmi �

� Biþ1½ð�2
i � 6�i þ 12þ 6�i�ið4� �i þ �i�iÞÞmi �½�2

i �
2
i þ 4�i�i þ 2�

where

Biþ1 ¼

�iþ1

�
miþ1

iþ1 � 1

" #
�ipmi expð�imiÞ½ �

�iþ1pmiþ1= expð�iþ1miþ1Þ � 1½ � expð�imiÞ � 1½ �
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and

�iþ1 ¼
2�iþ1

hiþ1

� �
1þ �iþ1�iþ1

�2
iþ1�

2
iþ1 þ 4�iþ1�iþ1 þ 2

" #

�iþ1 ¼
�2

iþ1 þ 6�iþ1 þ 12þ 6�iþ1�iþ1ð4þ �iþ1 þ �iþ1�iþ1Þ
�2

iþ1 � 6�iþ1 þ 12þ 6�iþ1�iþ1ð4� �iþ1 þ �iþ1�iþ1Þ

To find �iþ1 in terms of miþ1;mi and �i.
To determine �iþ1 in terms of miþ1;mi and �i, find the roots of the following polynomial,

Hð�iþ1Þ:

Hið�iþ1Þ ¼ Ci½ð�2
iþ1 þ 6�iþ1 þ 12þ 6�iþ1�iþ1

� ð4þ �iþ1 þ �iþ1�iþ1ÞÞmiþ1 �½�2
iþ1�

2
iþ1 þ 4�iþ1�iþ1 þ 2�

� ½�2
iþ1 � 6�iþ1 þ 12þ 6�iþ1�iþ1

� ð4� �iþ1 þ �iþ1�iþ1Þ�miþ1
2�iþ1

hiþ1

� �
½1þ �iþ1�iþ1�

� Ci½�2
iþ1 � 6�iþ1 þ 12þ 6�iþ1�iþ1

� ð4� �iþ1 þ �iþ1�iþ1Þ�miþ1 ½�2
iþ1�

2
iþ1 þ 4�iþ1�iþ1 þ 2�

where

Ci ¼

�i�
mi

i

�mi

i � 1

� �
½�iþ1pmiþ1�

�ipmi expð�imiÞ
expð�imiÞ � 1

� �
½expð�iþ1miþ1Þ � 1�
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